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Abstract

It is shown how the arithmetic structure of algebraic curves encoded in the Hasse–Weil L-function
can be related to affine Kac–Moody algebras. This result is useful in relating the arithmetic geometry
of Calabi–Yau varieties to the underlying exactly solvable theory. In the case of the genus three
Fermat curve we identify the Hasse–Weil L-function with the Mellin transform of the twist of a
number theoretic modular form derived from the string function of a non-twisted affine Lie algebra.
The twist character is associated to the number field of quantum dimensions of the conformal field
theory.
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1. Introduction

1.1 Number theoretic methods have proven useful in attempts to understand string theoretic
aspects of Calabi–Yau varieties. Physically, string theory is a two-dimensional conformal
field theory on a Riemannian surface. Mathematically it can be viewed, in the present con-
text, as a vertex operator algebra associated to an affine Kac–Moody algebra. The problem
of string compactification can be interpreted as an attempt to construct a map which re-
lates Kac–Moody vertex algebras to the geometry of Calabi–Yau varieties. Part of the data
of the conformal field theory are the anomalous dimensions of the fields of the theory.
These scaling dimensions are rational numbers that appear in the correlation functions of
the quantum field theory. It turns out that it is more useful to think about these values in
terms of the number field generated by their associated quantum dimensions, defined via
the characters of the Kac–Moody algebra. A relation between these quantum dimensions
and the arithmetic of Calabi–Yau varieties of Brieskorn–Pham type has been established
in [1] by considering the Hecke theoretic nature of the Hasse–Weil L-functions of these
varieties. A more conceptual framework of this relation has been formulated in[2].

An important aspect of conformal field theory is modular invariance, a property of the
string that appears difficult to explain from a geometric point of view. It has in particular
been an open question for a long time how the string theoretic building blocks on the world
sheet are reflected in the geometry of spacetime. One way to make this question more
precise is by asking how the characters that appear in the partition function of the string
emerge from spacetime, and how in turn the spacetime geometry can be constructed from
string theoretic quantities. Questions of this type have a long history in arithmetic algebraic
geometry, e.g. in the context of the Shimura–Taniyama conjecture[3,4] and the Langlands’
program, but string theory provides a somewhat different focus than the one encountered in
a broader arithmetic framework. Modularity of motivic L-functions associated to algebraic
varieties along the lines of Langlands’ program is not sufficient. In order to be of string
theoretic significance, the motivic modular forms should allow an interpretation in terms of
modular forms that arise in the description of the physics on the Riemann surfaces defined
by the propagating string.

It was shown in[5] in the context of string compactifications on elliptic curves that the
Mellin transform of the Hasse–Weil L-function of the plane cubic

C3 = {(x : y : z) ∈ P2|x3 + y3 + z3 = 0} (1)

factors into a product of modular forms that arise from the characters of the underlying two-
dimensional theory. More precisely, the following result was obtained. Defineq = e2πiτ and
let

η(τ) = q1/24
∞∏

n=1

(1 − qn) (2)

denote the Dedekindη-function,ck
�,m(τ) be the affine SU(2) string functions at conformal

levelk ∈ N, and

Θk
�,m(τ) = η3(τ)ck

�,m(τ) (3)
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be the Hecke indefinite modular forms associated tock
�,m(τ). Define further the congruence

group of elements of SL(2,Z) that are upper triangular modN as

Γ0(N) =
{(

a b

c d

)
∈ SL2(Z)

∣∣∣∣∣
(

a b

c d

)
∼
(

∗ ∗
0 ∗

)
(modN)

}
, (4)

and denote byS2(Γ0(N)) the space of cusp forms with respect toΓ0(N).

Theorem 1.1. The Mellin transform of the Hasse–Weil L-function LHW(C3, s) of the cubic
elliptic curve C3 ⊂ P2 is a modular form fHW(C3, q) ∈ S2(Γ0(27)) which factors into the
product

fHW(C3, q) = Θ1
1,1(q3)Θ1

1,1(q9). (5)

Here Θ1
1,1(τ) = η3(τ)c1

1,1(τ) is the Hecke modular form associated to the quadratic

extensionQ(
√

3) of the rational fieldQ, determined by the unique string function c1
1,1(τ) of

the affine Kac–Moody SU(2)-algebra at conformal level k = 1.

1.2 Elliptic curves are somewhat degenerate examples of Calabi–Yau manifolds and the
question arises whether the results of[5] can be extended to more general algebraic curves,
e.g.

Cn = {(x : y : z) ∈ P2|xn + yn + zn = 0}. (6)

The genus of these Riemann surfaces is given byg(Cn) = (n − 1)(n − 2)/2, hence except
for the cubic curveC3 just discussed these curves are not elliptic. It is therefore not obvious
whether one should be able to find a string theoretic interpretation, generalizing the result
described above forC3. For such general Riemann surfaces there exists in particular no a
priori statement like the proof of the Shimura–Taniyama conjecture which would ensure the
modularity of theq-expansion derived from the Hasse–Weil L-function. It is this question
which we address in this paper.

An argument in favor of a conformal field theoretic interpretation of the curvesCn

is provided by the fact that they appear as singular sets of higher dimensional Calabi–
Yau varieties that are expected to be exactly solvable. For the cubic curveC3 such higher
dimensional manifolds are abundant, examples being provided by the elliptic K3 surface
defined by the degree 6 polynomial in weighted projective spaceP(1,1,2,2)

S6 = {(z1 : · · · : z4) ∈ P(1,1,2,2)|z6
1 + z6

2 + z3
3 + z3

4 = 0}, (7)

or the degree 12 Calabi–Yau threefold

X12 = {(z0 : · · · : z4) ∈ P(1,1,2,4,4)|z12
0 + z12

1 + z6
2 + z3

3 + z3
4 = 0}. (8)

To be more precise, the Gepner model ofX12 is given by

P(1,1,2,4,4) ⊃ X12 ∼= (102
A ⊗ 4A ⊗ 12

A)GSO, (9)
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with two minimal models at conformal levelk = 10, one model atk = 4, and two
models atk = 1, all equipped with the diagonal affine invariant. The singular curve
in this threefold is P(1,2,2) [6] ∼= P2 [3], i.e. the Fermat curveC3. The result of
Theorem 1.1provides a geometric construction of the characters of the two minimal factors
atk = 1.

In the case ofX12 we can also identify the curveC3 as the generic elliptic fiber which
can be identified by an iterative application of the construction described in[6]. First we
can construct the elliptic K3 surfaceS6 via the twist map as

P(2,1,1) [6] × P2 [3] → P(1,1,2,2) [6], (10)

and then the hypersurfaceX12 can be constructed by applying the twist map again in the
form

P(2,1,1) [12] × P(1,1,2,2) [6] → P(1,1,2,4,4) [12]. (11)

We therefore see that the twist map allows to construct the threefoldX12 as an iterated
orbifolds of products of curves and makes explicit the origin of the two minimal factors at
k = 1. There is a large number of varieties of this type among the Calabi–Yau hypersurface
threefolds constructed in the mirror paper[7], and in refs.[8], which describe the complete
construction of this class of varieties.

For higher genus curves of typeCn similar embeddings can be obtained. A few examples
are provided by the quartic plane curveC4, which is embedded in the octic hypersurface
in weighted projective spaceP(1,1,2,2,2), the quintic curveC5, embedded inP(1,3,2,2,2), or
the septic curveC7 in P(1,7,2,2,2). The class of higher dimensional varieties of this type is
large. Because they form part of an exactly solvable variety we might expect these curves to
inherit the information of the underlying string theory. In this way we are led to ask whether
more general, non-Calabi–Yau varieties are related to affine Kac–Moody algebras similar
to the cubic.

In the present paper we first analyze the simplest non-elliptic Fermat curveC4 in detail,
and in the last section indicate a procedure which puts the quartic into perspective and
shows that other curves can be treated in a similar way. In particular we prove the following
result.

Theorem 1.2. The Hasse–Weil L-function LHW(C4, s) of the quartic plane curve C4 fac-
tors into a triple product LHW(C4, s) = LHW(E4, s)3, where LHW(E4, s) is Hasse–Weil
L-functions of the weighted elliptic curve

E4 = {(x0 : x1 : x2) ∈ P(1,1,2)|x4
0 + x4

1 + x2
2 = 0}. (12)

The Hasse–Weil modular form fHW(E4, q) ∈ S2(Γ0(64))associated to L(E4, s) factors into
a twisted product

fHW(E4, q) = Θ2
1,1(4τ)2 ⊗ χ2. (13)

Here the twist character is the Legendre symbol χ2(·) = ( 2
· ) and Θ2

1,1(τ) is the affine SU(2)

theta function of the string function c2
1,1(τ) at conformal level k = 2.
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This result shows that the modular forms derived from the quartic curve admits a Kac–
Moody theoretic interpretation via an SU(2) theta function.
1.3 We can turn this result around and read it as an arithmetic interpretation of a conformal
field theoretic object, the string theoretic parafermionic string functions.

Corollary 1.3. The SU(2)string function c2
1,1(τ) at level k = 2 is determined by the twisted

Hasse–Weil modular form

c2
1,1(τ) = 1

η3(τ)

√
fHW(E4) ⊗ χ2(q1/4). (14)

1.4 The weighted elliptic curveE4 which emerges as the arithmetic building block of the
quartic curve also appears as the singular set of many higher dimensional varieties and
it is possible to repeat the conformal field theoretic analysis indicated above for Fermat
curves. This can be illustrated by considering the Calabi–Yau threefoldX16 of degree 16
embedded in the weighted projective spaceP(1,1,2,4,8). This variety is a K3-fibration with
a generic fiber described by a degree 8 hypersurfaceS8 embedded inP(1,1,2,4) which is
elliptic. The generic fiber of this elliptic fibration is precisely the curveE4 and we can
iteratively construct the degree 16 threefold inP(1,1,2,4,8) with the methods of[6] by first
considering the map

P(2,1,1) [8] × P(1,1,2) [4] → P(1,1,2,4) [8], (15)

and then applying the map

P(2,1,1) [16] × P(1,1,2,4) [8] → P(1,1,2,4,8) [16]. (16)

Alternatively, E4 appears as theZ2-singular curve on this threefold. As in the case of
Theorem 1.1in the case of the cubic curveTheorem 1.2provides a geometric interpretation
of the string theoretic modular form of the minimal factor at conformal levelk = 2 which
is part of the Gepner model corresponding to this threefold.

It becomes clear by an iterative application of the twist map construction[6] that elliptic
threefolds which are K3 fibrations can be built from the generic elliptic fiber and other curves.
Thereby the question of modularity for these higher dimensional varieties is reduced to the
modularity problem of curves.
1.5 This paper is organized as follows. In Section2 we compute the Hasse–Weil L-function
of the quartic. We will see that arithmetically the basic building block of this curve is
given by the elliptic Brieskorn–Pham curve of degree 4. In Section3 we briefly review the
relevant aspects of non-twisted affine Kac–Moody algebras. In Section4 the modular form
defined by the twisted Mellin transform of the Hasse–Weil L-function is related to a modular
form derived from the character of an affine Kac–Moody algebra. A relation between the
character defining this twist and the quantum dimensions of the affine Kac–Moody algebra
is described in Section5. In the final Section6 we show that the factorization behavior
of the quartic is typical for Fermat curves, indicating that other curves can be treated in a
similar way.
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2. Hasse–Weil L-function

2.1 For algebraic varietiesX the congruent zeta function at a prime numberp can be defined
as the generating function

Z(X/Fp, t) ≡ exp

(∑
r∈N

#(X/Fpr )
tr

r

)
. (17)

It was first shown by Schmidt[9,10]that for algebraic curvesX the zeta functionZ(X/Fp, t)
is a rational function which takes the form

Z(X/Fp, t) = P(p)(t)

(1 − t)(1 − pt)
, (18)

where

P(p)(t) =
2g∑
i=0

βi(p)ti, (19)

is a polynomial whose degree is given by the genusg(X) = (2 − χ(X))/2 of the curve,
whereχ(X) is the Euler characteristic of the curve. More important is the global zeta
function obtained by settingt = p−s and taking the product over all rational primes at
which the variety has good reduction. LetS denote the set of rational primes at whichX
becomes singular and denote byPS the set of primes that are not inS. The global zeta
function then becomes

Z(X, s) =
∏

p∈PS

P(p)(p−s)

(1 − p−s)(1 − p1−s)
= ζ(s)ζ(s − 1)

LHW(X, s)
, (20)

with the Hasse–Weil L-function

LHW(X, s) =
∏

p∈PS

1

P(p)(p−s)
, (21)

and the Riemann zeta functionζ(s) =∏p(1 − p−s)−1.
The most direct way to compute the expansion at least for the lower primes involves

the comparison of the definition of the congruent zeta function with the rational expression
found by Schmidt. For our purposes it suffices to collect the first three non-trivial coefficients

β0(p) = 1,

β1(p) = N1,p − (p + 1),

β2(p) = 1
2(N2

1,p + N2,p) − (p + 1)N1,p + p,

β3(p) = 1
3N3,p + 1

2N2,p + 1
6N3

1,p − 1
2(N2

1,p + N2,p) + pN1,p,

...

β6(p) = p3.

(22)

We collect inTable 1our results for the first few primes.
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Table 1
The coefficientsβ1, β2 for the quartic curveC4 of genus 3

Primep

2 3 5 7 11 13 17 19 23 29 31 37 41

N1,p 3 4 0 8 12 32 12 20 24 0 31 32 12
N2,p 5 28 34
β1(p) 0 0 −6 0 0 18 −6 0 0 −30 0 −6 −30
β2(p) 0 9 27

Using these results leads to the expansion

LHW(C4, s) =
∏
p

1

1 + β1(p)p−s + · · · + p3p−6s

= 1 + 6

5s
− 9

9s
− 18

13s
+ 6

17s
+ 9

25s
+ 30

29s
+ 6

37s
+ 30

41s
+ · · · (23)

The associatedq-series then takes the form

fHW(C4, q) = q + 6q5 − 9q9−18q13+6q17+9q25+30q29+6q37+30q41 + · · ·
(24)

Finite expansions like this often turn out to be useful because of theorems by Faltings and
Serre which show that such functions are determined uniquely by a finite number of terms.
2.2 The behavior of the coefficientsan of the Hasse–Weilq-expansion under Hecke op-
erators indicates that this series does not describe a Hecke eigenform. Hence the above
result for the Hasse–Weil L-function is not particularly illuminating except for the fact that
all the coefficients are divisible by 3. This suggests that the Hasse–Weil L-function of the
quartic plane curve can be viewed as the cubic power of a more basic L-series. We can write
LHW(C4, s) = L3(s) with

L(s) = 1 + 2

5s
− 3

9s
− 6

13s
+ 2

17s
− 1

25s
+ 10

29s
+ 2

37s
+ 10

41s
+ · · · (25)

The seriesL(s) can be obtained via the Mellin transform

L(s) = (2π)s

Γ (s)

∫ ∞

0
f (iy)ys−1 dy (26)

from the expansion

f (q) = q + 2q5 − 3q9 − 6q13 + 2q17 − q25 + 10q29 + 2q37 + 10q41 + · · · (27)

This result indicates thatf (q) is the basic building block of the Hasse–Weil L-form
fHW(C4, q), providing a sort of cubic root of it via its L-series.
2.3 The question arises whether one can interpret the expansion(27) in a geometric way as
the Hasse–Weil modular form of some other geometric object. To answer such a factorization
question it is useful to understand the polynomialsP(p)(t) which determine the congruence
zeta function in a more systematic way in terms of Jacobi sums.
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Theorem ([11]). For the plane curve

Cn = {zn
0 + zn

1 + zn
2 = 0} ⊂ P2 (28)

defined over the finite field Fq set d = (n, q − 1) and define the set Aq,n
2 of triplets α =

(α0, α1, α2) of rational numbers

A
q,n
2 =

{
(α0, α1, α2) ∈ Q3|0 < αi < 1, d = (n, q − 1), dαi

= 0 (mod 1),
2∑

i=0

αi = 0 (mod 1)

}
.

For such triplets define the Jacobi sums

jq(α0, α1, α2) = 1

q − 1

∑
u0,u1,u2∈Fq
u0+u1+u2=0

χα0(u0)χα1(u1)χα2(u2), (29)

where χαi (ui) = e2πiαimi and the integers mi are determined via ui = gmi , where g ∈ Fq is
a generator. Then the cardinality of Cn/Fq is given by

#(Cn/Fq) = N1,q(Cn) = 1 + q +
∑

αεA
q,n

2

jq(α0, α1, α2). (30)

With these Jacobi sums one can express the F.K. Schmidt polynomial as

P(p)(t) =
∏

α∈An
2

(1 + jpµα (α)tµα )1/µα, (31)

whereµα is the smallest positive integer such that forα in the setAn
2 defined by

An
2 =

{
α ∈ Q3|αi ∈ (0, 1), nαi ∈ N,

2∑
i=0

αi ∈ N
}

, (32)

one finds (pµα − 1)αi ∈ N for all i. Applied to the quartic curveC4 the setAq,4
2 is given by

A
q,4
2 =

{
∅, if d = (4, q − 1) ∈ {1, 2},
A4

2 if d = (4, q − 1) = 4.
(33)

with A4
2 = A4

2(1) ∪A4
2(2), where

A4
2(1) =

{(
1

2
,

1

4
,

1

4

)
,

(
1

4
,

1

2
,

1

4

)
,

(
1

4
,

1

4
,

1

2

)}
,

A4
2(2) =

{(
1

2
,

3

4
,

3

4

)
,

(
3

4
,

1

2
,

3

4

)
,

(
3

4
,

3

4
,

1

2

)}
. (34)
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Table 2
Coefficientsβ1(p) = N1,p(E) − (p + 1) of the Hasse–Weil modular form of the elliptic quartic curveE in terms
of the cardinalitiesN1,p(E) for the lower rational primes

Primep

2 3 5 7 11 13 17 19 23 29 31 37 41

N1,p 3 4 4 8 12 20 16 20 24 20 32 36 32
β1(p) 0 0 −2 0 0 6 −2 0 0 −10 0 −2 −10

The sumsjq(α) are constant over the permutation orbits ofA4
2, and withjp

(
1
2, 3

4, 3
4

)
=

jp

(
1
2, 1

4, 1
4

)
one finds

LHW(C4, s) =
∏
p

1

(1 + 2ap · p−s + p · p−2s)3
, (35)

whereap = Rejp( 1
2, 1

4, 1
4).

HenceLHW(C4, s) = L3(s) in terms of an L-function

L(s) =
∏
p

1

1 + 2ap · p−s + p · p−2s
(36)

which has the form of the Hasse–Weil series of an elliptic curve. The quartic curveC4 has
genusg = 3, hence this factorization indicates that the L-function of this curve splits into a
product ofg elliptic contributions. Such a factorization into elliptic factors will not happen
for general Fermat curves.
2.4 The above decomposition allows us to return to the question, asked above, whether one
can determine an elliptic curve whose Hasse–Weil series has been determined by(36). The
quartic curveC4 becomes singular when reduced atp = 2. Hence we would expect the
purported elliptic curve to have a conductor that is divisible by two, suggesting an elliptic
curve of degree 4. Such a curve is the well known weighted torus, described by

E4 = {(x0 : x1 : x2) ∈ P(1,1,2)|x4
0 + x4

1 + x2
2 = 0}. (37)

The cardinalities for this curve are collected inTable 2.
The Hasse–Weil modular form resulting from the solutionsE/Fp starts out as

fHW(E4, q) = q + 2q5 − 3q9 − 6q13 + 2q17 − q25 + 10q29 + 2q37 + 10q41 + · · ·
(38)

in agreement with the expansionf (q) associated to the ‘cube root’L(s) discussed above.
We are therefore in the same situation as in[5] and we can ask whether the modular

form f (q) = fHW(E4, q) can be related to modular forms that are induced by conformal
field theoretic characters.
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3. Affine Kac–Moody algebras

3.1 A construction of non-twisted affine Kac–Moody algebras, also called affine Lie alge-
bras, is provided by the extension[12]

Ĝ = LG ⊕ Ck ⊕ Cd (39)

of the loop algebra

LG = G ⊗ C[t, t−1] (40)

by the central extensionK andD = t d
dt

. In terms of the generatorsJa ⊗ tm the algebra
becomes

[Ja ⊗ tm, Jb ⊗ tn] = if ab
c Jc ⊗ tm+n + Kmδabδm+n,0. (41)

The representations of this algebra can be parametrized by affine weightsλ̂ = (λ, k, n)
of the Cartan subalgebra{Hi

0, K, D}, with i = 1, . . . , r, wherer denotes the rank of the
underlying Lie algebra G. For fixed levelk of the theory the charactersχλ̂ are essentially
parametrized by the weightλ of the representation. For the reduced characters of an affine
Lie algebraĜ at levelk the characters transform as

χλ̂(−1/τ) =
∑

µ̂∈Pk+

Sλ̂,µ̂χµ̂(τ), (42)

where the modularS-matrix takes the form

Sλ̂,µ̂ = i|�+|
√|P/Q∨|(k + g)r

∑
w∈W

ε(w) e−2πi(〈w(λ+ρ),µ+ρ〉)/(k+g). (43)

HereP =∑i Zωi denotes the lattice of fundamental weightsωi defined by〈ωi, α
∨
j 〉 = δij

via corootsα∨
j = 2α

〈α,α〉 . Q∨ =∑i Zα∨
i is the coroot lattice andP/Q∨ denotes the lattice

points ofP lying in an elementary cell ofQ∨, while |P/Q∨| describes the number of points
in this set.Pk+ is the set of all dominant weights at levelk, andε(w) = (−1)�(w) is the
signature of the Weyl group elementw, where�(w) is the minimum number of simple
Weyl reflections thatw decomposes into.∆+ is the number of positive roots in the Lie
algebra G.
3.2 Supersymmetric string models can be constructed in terms of conformal field theories
with N = 2 supersymmetry. The simplest class ofN = 2 supersymmetric exactly solvable
theories is built in terms of the affine SU(2)k algebra at levelk as a coset model SU(2)k ⊗
U(1)2/U(1)k+2,diag. Coset theoriesG/H lead to central charges of the formcG − cH , hence
the supersymmetric affine theory at levelk still has central chargeck = 3k/(k + 2). The
spectrum of anomalous dimensions∆�

q,s and U(1)-chargesQ� of the primary fieldsΦ�
q,s at

level k is given by

∆�
q,s = �(� + 2) − q2

4(k + 2)
+ s2

8
,
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Q�
q,s = − q

k + 2
+ s

2
, (44)

where� ∈ {0, 1, . . . , k}, � + q + s ∈ 2Z, and|q − s| ≤ �. Associated to the primary fields
are characters defined as

χk
�,q,s(τ, z, u) = e−2πiutrH�

q,s
e2πiτ(L0−c/24)e2πiJ0, (45)

where the trace is to be taken over a projectionH�
q,s to a definite fermion number (mod 2)

of a highest weight representation of the (right-moving)N = 2 algebra with highest weight
vector determined by the primary field. It is of advantage to express these maps in terms of
the string functions and theta functions, leading to the form

χk
�,q,s(τ, z, u) =

∑
ck
�,q+4j−s(τ)θ2q+(4j−s)(k+2),2k(k+2)(τ, z, u). (46)

It follows from this representation that the modular behavior of theN = 2 characters de-
composes into a product of the affine SU(2) structure in the� index and intoΘ-function
behavior in the charge and sector index. The string functionsck

�,m(τ) are given by

ck
�,m(τ) = 1

η3(τ)

∑
−|x|<y≤|x|

(x,y) or
(

1
2−x, 1

2+y

)
∈Z2+

(
�+1

2(k+2) ,
m
2k

)
sign(x) e2πiτ((k+2)x2−ky2) (47)

while the classical theta functionsθm,k are defined as

θn,m(τ, z, u) = e−2πimu
∑

�∈Z+ n
2m

e2πim�2τ+2πi�z. (48)

It follows from the coset construction that the essential ingredient in the conformal field
theory is the SU(2) affine theory.
3.3 It was suggested by Gepner some time ago that exactly solvable string compactifica-
tions obtained by tensoring several copies ofN = 2 supersymmetric conformal field theories
derived from affine Kac–Moody algebras should yield, after performing appropriate pro-
jections, theories that correspond in some limit to geometric compactification described
by Brieskorn–Pham type Calabi–Yau varieties[13]. The evidence for this conjecture was
initially based mostly on spectral information for all models in the Gepner class of solvable
string compactifications and the agreement of certain types of intersection numbers which
allow an interpretation as Yukawa couplings, as well as Landau–Ginzburg type arguments
[14]. In the case of the Fermat cubic curve these results suggest that there is an underlying
conformal field theory of this elliptic curve that is described by the GSO projection of a
tensor product of three models at conformal levelk = 1. Roughly, this entails a relation of
the type

P2 ⊃ C3↔(SU(2)k=1,A1)⊗3
GSO, (49)

whereA1 signifies the diagonal invariant for the SU(2) partition function, and GSO indicates
the projection which guarantees integral U(1)-charges of the states.
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In the case of higher genus curves no such direct relation is expected from a string
theory perspective. There is, however, a weaker embedding argument that suggests a pos-
sible modular interpretation. Higher genus curves can be embedded in higher dimensional
Calabi–Yau varieties which in turn are conjectured to be exactly solvable. Examples of
such embeddings for the quartic curve are provided by threefolds such as Brieskorn–Pham
hypersurfacesP(1,1,2,2,2) [8], P(1,2,3,3,3) [12], P(1,4,5,5,5) [20], and others. The first of these
varieties, e.g.

X8 = {z8
0 + z8

1 + z4
2 + z4

3 + z4
4 = 0} ⊂ P(1,1,2,2,2) (50)

is expected to be related to the conformal field theory

((SU(2)k=6,A1)⊗2 ⊗ (SU(2)k=2,A1)⊗3)GSO. (51)

Hence we might expect that conformal field theoretic aspects are encoded in the quartic
curve

P2 ⊃ C4↔(SU(2)k=2,A1)⊗3. (52)

This leads to the affine Kac–Moody algebra SU(2) at level two and we can ask whether
there are relations between the modular objects determined by the affine algebra, and the
modular objects determined by the variety. The results of[5] suggest that interesting affine
quantities to consider are the SU(2) theta functions associated to string functions at con-
formal levelk, defined asΘk

�,m(τ) = η3(τ)ck
�,m(τ). The expansion of the theta functions at

conformal levelk = 2 follows from those of the string function expansions. It turns out that
relevant for the present discussion is the theta function

Θ2
1,1(q) = q1/8(1 − q − 2q2 + q3 + 2q5 +O(q6)). (53)

This is a modular form of weight one, and therefore cannot be identified directly with
the Hasse–Weil form itself. It will become clear below, however, thatΘ2

1,1(q) emerges as
the building block of the Hasse–Weil modular formfHW(C4, q) of the quartic plane Fermat
curve.

4. Geometric modularity

4.1 From a physical perspective it is not clear a priori which conformal field theoretic
quantities should be the correct building blocks of the Hasse–Weil function, if any. Pos-
sibilities include the twists of the affine or parafermionic characters, or some elements of
theN = 2 superconformal model. The coset construction shows that the most important
ingredient of theN = 2 theory is given by the affine SU(2) Kac–Moody algebra. The string
functionsck

�,m(τ) of theN = 2 characters would appear to be natural candidates because
they capture the essential interacting nature of the field theory. Furthermore, associated to
string functions are natural number theoretic theta functions.

The main result of[5] shows that the Hasse–Weil L-function of the cubic plane curveC3
is determined by the Kac–Moody string function of the affine SU(2) algebra at conformal
level k = 1. At k = 1 there is only one string function,c1

1,1(τ), which can be computed to



M. Lynker, R. Schimmrigk / Journal of Geometry and Physics 56 (2006) 843–863 855

lead to the expansion

c1
1,1(τ) = q−1/24(1 + q + 2q2 + 3q3 + 5q4 + 7q5 +O(q6)). (54)

It turns out that more important than the string functions are the associated SU(2) theta
functionsΘk

�,m(τ) (3). These objects are associated to quadratic number fields determined
by the level of the affine theory[15]. At level k = 1 the unique theta functionΘ1

1,1(τ)

is associated to the real quadratic extensionQ(
√

3) of the rational fieldQ. Its expansion
follows from the string function expansion, resulting in

Θ1
1,1(q) = q1/12(1 − 2q − q2 + 2q3 + q4 + 2q5 +O(q6)). (55)

It is this modular form of weight one which emerged in[5] as the building block of the
Hasse–Weil modular formfHW(C3, q) of the cubic elliptic curve

fHW(C3, τ) = Θ1
1,1(3τ)Θ1

1,1(9τ). (56)

4.2 The case of the elliptic cubic curve is special because it is a Calabi–Yau curve and
therefore defines a consistent string theory background. For higher genus curves this is not
the case, and it is therefore not a priori clear whether one should expect a relation to the string
theoretic Kac–Moody algebra. As mentioned above, an argument that is encouraging is that
higher genus algebraic curves such as the quartic, and others, appear in higher dimensional
Calabi–Yau varieties as singular curves which have to be resolved.
4.3 In the case of the quartic curve we can use the result derived above that the L-function
is that of a triple product of elliptic curves. This reduces the current problem to the type
of problem solved in[5], and we can follow the logic used in the construction introduced
there. First we need to determine the weight and the level of this form. For a general elliptic
curve the corresponding modular formfHW(E, q) defined by the Mellin transform of the
Hasse–Weil L-functionLHW(E, s) is determined by the proof of the Shimura–Taniyama
conjecture to be an element inS2(Γ0(N)) for some levelN. Alternatively, one can read
off the weight of a Hecke eigenform from the multiplicative properties of its coefficients
{an}n∈N induced by the Hecke operators

amn = aman(m, n) = 1, apn+1 = apnap − pk−1apn−1,

apn = (ap)n, for p|N, (57)

as described in more detail in[5] for the case of cubic plane curve.
4.4 The quartic curve is singular at the primep = 2, therefore we expect the conductor of
the elliptic curves involved to be divisible by 2, and perhaps by powers of two. Using Weil’s
conductor conjecture[16] for elliptic curves we further expect the modular conductor of the
corresponding modular form to be divisible by some power of 2. The arithmetic conductor
of the elliptic curveE can be determined via Tate’s algorithm[17] from the generalized
affine form ofE given by

y2 − a1xy − a3y = x3 + a2x
2 + a4x + a6. (58)

By a result of Ogg[18] the conductor of such a curve can be computed as

NE/Q =
∏
badp

pfp, (59)
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where the exponentfp is given by

fp = ordp∆E/Q + 1 − sp, (60)

in terms of discriminant∆E/Q of the curve and the numbersp of irreducible components of
the singular fiber atp. This shows that the conductor of the elliptic curve can be viewed as
a quantity which combines the bad primes with a measure of the severity of the singularity
at these bad primes.
4.5 The elliptic quartic curveE4 can be transformed into its affine form by choosing inho-
mogeneous coordinates and defining new coordinatesv = xz/y andu = (x/y)2, leading to
the Weierstrass form

v2 = u3 + u. (61)

Tate’s computation of the discriminant simplifies considerably for this curve, leading to
∆E4 = −64, and therefore ord2∆E4 = 6. The singular fiber is of Kodaira type II, and
therefore the arithmetic conductor isN = 64.
4.6 Combining the conductor argument with the string theoretic embedding of the quartic
curve into higher dimensional varieties we are led to consider the form

Θ2
1,1(q4)2 = q − 2q5 − 3q9 + 6q13 + 2q17 − q25 − 10q29 + · · · (62)

Comparing this with the Mellin transform(38)of the cubic root of the Hasse–Weil L-form
of the quarticC4 shows agreement withΘ2

1,1(4τ)2 except for the signs in the termsqn with
n = 1 (mod 8).

We therefore see that the discussion of the quartic curve must involve an ingredient that
goes beyond the analysis that succeeded in[5] in providing a string theoretic Kac–Moody
algebra interpretation of the Hasse–Weil L-function. In some sense the elliptic curve defined
by C3 is too special to reveal all the key elements necessary for this identification. In the
following we will first complete the identification of the Hasse–Weil modular form with a
string theoretic modular form in a somewhat utilitarian manner by pin-pointing the missing
ingredient. We then turn to the physical interpretation of this ingredient and explain why it
does not appear in the discussion ofC3.

The sign flip suggests that the Hasse–Weil modular formfHW(E4, q) might be related
to the modular formΘ2

1,1(4τ)2 via a twist. For a modular formf (q) =∑n anq
n and a

Dirichlet character

χ : Z→ K× (63)

with values in a fieldK, define the twisted form as

fχ(q) =
∑

n

χ(n)anq
n. (64)

We are interested in a character with conductor 8, taking values inK = F2. An example of
a class of characters which leads to such an object is provided by Legendre symbols. These
are defined on rational primes as

χn(p) =
(

n

p

)
=
{

1 n is a square inFp,

−1 n is not a square inFp.
(65)
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The conductor ofχn(·) is given by n if n = 1 (mod 4) and 4n for n = 2, 3 (mod
4).

For non-prime numbers the generalized Legendre symbol is defined by using the prime
decomposition. Every natural numberm can be decomposed into primes asm = p1 · · · pr

and the generalized symbol is defined as

χn(m) =
r∏

i=1

(
n

pi

)
. (66)

This shows that forn = 2 the Legendre symbol takes the form

χ2(r) =
(

2

r

)
=
{

1 r = 1 (mod 8),

−1 r = 5 (mod 8).
(67)

It is this character which provides the twist from the conformal field theory induced
modular form to the elliptic L-function which provides the basic building block of the
Hasse–Weil L-function of the quartic curve.

We therefore see that the CFT modular formΘ2
1,1(4τ)2 of weight two is the twist of

the geometric weight two modular form via the number theoretic Legendre symbol. Put
differently, we see that if we denote byΘ2

1,1(4τ)2 ⊗ χ2 the modular form obtained by

twisting the formΘ2
1,1(4τ)2 by the characterχ2(·), we can write the Hasse–Weil L-function

of as

LHW(C4, s) = L(Θ2
1,1(4τ)2 ⊗ χ2, s)

3. (68)

This concludes the proof of the theorem stated in Section 1.
The remaining question is whether the theta function input is unique. To answer this one

can use the Eichler–Shimura theory[19–21]. Θ2
1,1(4τ)2 is an element in the space of cusp

formsS2(Γ0(32)). For arbitrary modular levelN, the dimension of the spaceS2(Γ0(N)) can
be computed as the genus of the modular curveX0(N) via

g(X0(N)) = 1 + µ(N)

12
− ν2(N)

4
− ν3(N)

3
− ν∞

2
, (69)

whereµ(N) is the index ofΓ0(N) in Γ (1) = SL(2,Z), ν2(N) andν3(N) are the number of
elliptic points of order 2 and 3, andν∞(N) is the number ofΓ0(N) inequivalent cusps. For
N = 32 this implies that the space of cusp forms is one-dimensional, henceΘ1

1(4τ)2 is its
unique generator, up to the multiplication of a constant.

5. Quantum dimensions

The characterχ2(·) which appears above in the context of providing a string theoretic
interpretation of the Hasse–Weil modular form furthermore points toward the field of quan-
tum dimensions, thereby providing a link between the problem of a geometric explanation
of the string theoretic modularity and the problem of providing a geometric explanation of
the string theoretic spectrum.
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For general square freen the Legendre charactersχn(·) allow a characterization of the
factorization behavior of rational primesp when viewed as elements in a quadratic extension
Q(

√
n). They describe whether the rational primep splits into a product of prime ideals

pi ⊂ OQ(
√

n) in the ring of algebraic integersOQ(
√

n). The principal ideal (p) factors as (p) =
p1p2 if χn(p) = 1, remains prime ifχn(p) = −1, and ramifies, i.e. (p) = p2, if χn(p) = 0,
i.e.p|n. In summary we can write

χn(p) =




1 if (p) = p1p2,
−1 if (p) is prime,

0 if (p) = p2.
(70)

Forn = 2 the characterχ2 therefore is associated to the quadratic extensionQ(
√

2). It turns
out that this is precisely the field determined by the anomalous dimensions of the affine
theory when mapped into the quantum dimensions. This can be seen as follows.

It was noted in[1] that a link between the geometry and the conformal field theory can
be obtained by using a translation of the anomalous dimensions into algebraic integers via
the Rogers dilogarithm. In the simple case of the affine Lie algebra SU(2) at conformal level
k the modular transformations of the charactersχ associated to the primary fieldsΦi with
anomalous dimensions

∆� = �(� + 2)

4(k + 2)
(71)

are given by

χ�

(
−1

τ
,
u

τ

)
= eπiku2/2

∑
m

S�mχm(τ, u) (72)

with modularS-matrix

S�m =
√

2

k + 2
sin

(
(� + 1)(m + 1)π

k + 2

)
, 0 ≤ �, m ≤ k. (73)

With these matrices one can define the generalized quantum dimensions asQ�m =
S�m/S0m for the affine SU(2) algebra at levelk. The importance of these numbers derives
from the fact that even though they do not directly provide the scaling behavior of the
correlation functions, they do contain the complete information about the anomalous di-
mensions as well as the central charge. The first step in this direction was the realization by
Kirillov and Reshetikhin that the central charge can be expressed in terms of the quantum
dimensions. Earlier mathematical results had been obtained by Lewin. Denote byL Rogers’
dilogarithm

L(z) = Li2(z) + 1
2 log(z) log(1− z) (74)

andLi2 is Euler’s classical dilogarithm

Li2(z) =
∑
n∈N

zn

n2 . (75)

Then one has the following result.
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Theorem ([22–24]). For the generalized quantum dimensions Q�m one finds the following
relations

1

L(1)

k∑
�=1

L

(
1

Q2
�m

)
= 3k

k + 2
− 24∆(k)

m + 6m. (76)

For m = 0 this theorem reduces to the central charge result in terms of the quantum
dimensionsQ� = S�0/S00

1

L(1)

k∑
�=1

L

(
1

Q2
�

)
= 3k

k + 2
, (77)

that was obtained earlier in[25,26].
It follows that the quantum dimensions contain the essential information about the

spectrum of the conformal field theory and Rogers’ dilogarithm provides, via Euler’s
dilogarithm, the map from the quantum dimensions to the central charge and the anomalous
dimensions. A review of these results and references to the original literature can be found in
[24].

In the case of the elliptic curveE4 the exactly solvable model is a tensor product of two
SU(2) theories at conformal levelk = 2, equipped with the diagonal affine invariant

P(1,1,2) ⊃ E4 ∼ (SU(2)⊗2
k=2,A)GSO. (78)

The quantum dimensions of the SU(2) theory at levelk = 2 take values in the quadratic
extensionQ(

√
2) and therefore we find that the field of quantum dimensions provides a

physical explanation of the emergence of the Legendre character in the modularity relation
(13). Hence the main result of this paper can be interpreted as a geometric derivation of a
conformal field theoretic object-the conformal field theoretic modular formΘ2

1,1(4τ)2 is the
twist of the geometric modular form defined by the Hasse–Weil L-function via the quadratic
character associated to the number field of the quantum dimensions.

This physical explanation of the origin of the twist makes it clear why no character
was necessary in the discussion in[5] of the plane cubic elliptic curveC3. The quantum
dimensions of the affine theoryA(1)

1 at conformal levelk = 1 take values in the field of
rational numberQ.

6. Generalizations

For more general curves of higher genus it is possible to decompose the Jacobians in
a way similar to the analysis in previous sections. In general the factorization behavior
can be quite involved and in the following we briefly describe what is known about the
splitting behavior. For more detail we refer to the original literature[27,30] (see also
[31,2]). The reason why this factorization behavior is relevant in the present context is
that the splitting occurs on the level of isogenies, a map between abelian varieties that is
weaker than an isomorphism. It is however known that isogeneous varieties have the same
L-functions. Also important is that the varieties that emerge in this factorization admit
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complex multiplication and therefore their L-functions are determined by algebraic Hecke
characters. Hecke L-functions are known to be modular and therefore the factorization
of Jacobian varieties allows to determine modular forms associated to these higher genus
curves.

It was shown by Faddeev[27]1 that the Jacobian varietyJ(Cd) of Fermat curvesCd ⊂ P2
of prime degree splits into a product of abelian factorsAOi

J(Cd) ∼=
∏

Oi∈I/(Z/dZ)×
AOi , (79)

where the setI provides a parametrization of the cohomology ofCd , and the setsOi are
orbits inI of the multiplicative subgroup (Z/dZ)× of the groupZ/dZ. More precisely it
was shown that there is an isogeny

i : J(Cd) →
∏

Oi∈I/(Z/dZ)×
AOi , (80)

where an isogenyi : A→B between abelian varieties is defined to be a surjective homo-
morphism with finite kernel. Explicitly,I is the set of triplets (r, s, t) parametrizing a basis
of the cohomology

H1(Cd) = {ωr,s,t = xr−1ys−d dx|r, s, t ∈ N, 0 < r, s, t < d, r + s + t = 0 modd},
(81)

and the abelian varietiesA[(r,s,t)]
d are associated to orbits [(r, s, t)] of the triplets (r, s, t) with

respect to the group (Z/dZ)×.
The periods of the Fermat curve have been computed by Rohrlich[30] to be∫

AjBkκ

ωr,s,t = 1

d
B
( s

d
,

t

d

)
(1 − ξs)(1 − ξt)ξjs+kt, (82)

whereξ is a primitivedth root of unity, and

B(u, v) =
∫ 1

0
tu−1(1 − v)v−1 dt (83)

is the classical beta function.A,B are the two automorphism generators

A(1, y, z) = (1, ξy, z), B(1, y, z) = (1, y, ξz) (84)

andκ is the generator of H1(Cd) as a cyclic module overZ[A,B]. The period lattice of the
Fermat curve therefore is the span of(

. . . , ξjr+ks(1 − ξr)(1 − ξs)
1

d
B
( r

d
,

s

d

)
, . . .

)
1≤r,s,t≤d−1

r+s+t=d

, ∀0 ≤ j, k ≤ d − 1.

(85)

1 More accessible references are[28–30].
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The abelian factorA[(r,s,t)] associated to the orbitOr,s,t = [(r, s, t)] can be obtained as the
quotient

A[(r,s,t)] = Cϕ(d0)/2/Λr,s,t, (86)

whered0 = d/gcd(r, s, t) and the latticeΛr,s,t is generated by elements of the form

σa(z)(1 − ξas)(1 − ξat)
1

d
B

( 〈as〉
d

,
〈at〉
d

)
, (87)

wherez ∈ Z[µd0], σa ∈ Gal(Q(µd0)/Q) runs through subgroups of the Galois group of the
cyclotomic fieldQ(µd0) and〈x〉 is the smallest integer 0≤ x < 1 congruent tox modd.

Alternatively, the abelian varietyAr,s,t
d can be constructed in a more geometric way as

follows. Consider the orbifold of the Fermat curveCd with respect to the group defined as

G
r,s,t
d = {(ξ1, ξ2, ξ3) ∈ µ3

d |ξr
1ξ

s
2ξ

t
3 = 1}. (88)

The quotientCd/G
r,s,t
d can be described algebraically via projections

T
r,s,t
d : Cd → C

r,s,t
d , (x, y) �→ (xd, xrys) =: (u, v), (89)

which mapCd into the curves

C
r,s,t
d = {vd = ur(1 − u)s}. (90)

For prime degrees the abelian varietiesA
r,s,t
d can be defined simply as the Jacobians

J(Cr,s,t
d ) of the projectionsCr,s,t

d . Whend has non-trivial divisorsm|d, this definition must
be modified as follows. Consider the projected Fermat curves

Cd → Cm, (x, y) �→ (x̄, ȳ) := (xd/m, yd/m), (91)

whose Jacobians can be embedded ase : J(Cm) → J(Cd). Composing the projectionT r,s,t
d

as

J(Cm)
e→ J(Cd)

T
r,s,t
d→ J(Cr,s,t

d ) (92)

for all proper divisorsm|d leads to a collection of subvarieties∪m|dT r,s,t
d (e(J(Cm))). The

abelian variety of interest then is defined as

A
r,s,t
d = J(Cr,s,t

d )/ ∪m|d T
r,s,t
d (e(J(Cm))). (93)

The abelian varietiesAr,s,t
d are not necessarily simple but it can happen that they in

turn can be factored. This question can be analyzed via a criterion of Shimura–Taniyama,
described in[32]. Applied to theA

r,s,t
d discussed here the Shimura–Taniyama criterion

involves computing for each setH
r,s,t
d defined as

Hr,s,t
d := {a ∈ (Z/dZ)×|〈ar〉 + 〈as〉 + 〈at〉 = d } (94)

another setWr,s,t
d defined as

W
r,s,t
d = {a ∈ (Z/dZ)×|aH

r,s,t
d = H

r,s,t
d }. (95)

If the order|Wr,s,t
d | of W

r,s,t
d is unity then the abelian varietyAr,s,t

d is simple, otherwise it
splits into|Wr,s,t

d | factors[33].
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