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Abstract
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1. Introduction

1.1 Number theoretic methods have proven useful in attempts to understand string theoretic
aspects of Calabi—Yau varieties. Physically, string theory is a two-dimensional conformal
field theory on a Riemannian surface. Mathematically it can be viewed, in the present con-
text, as a vertex operator algebra associated to an affine Kac—Moody algebra. The problem
of string compactification can be interpreted as an attempt to construct a map which re-
lates Kac—Moody vertex algebras to the geometry of Calabi—Yau varieties. Part of the data
of the conformal field theory are the anomalous dimensions of the fields of the theory.
These scaling dimensions are rational numbers that appear in the correlation functions of
the quantum field theory. It turns out that it is more useful to think about these values in
terms of the number field generated by their associated quantum dimensions, defined via
the characters of the Kac—Moody algebra. A relation between these quantum dimensions
and the arithmetic of Calabi—Yau varieties of Brieskorn—Pham type has been established
in [1] by considering the Hecke theoretic nature of the Hasse—Weil L-functions of these
varieties. A more conceptual framework of this relation has been formulafédl in

An important aspect of conformal field theory is modular invariance, a property of the
string that appears difficult to explain from a geometric point of view. It has in particular
been an open question for a long time how the string theoretic building blocks on the world
sheet are reflected in the geometry of spacetime. One way to make this question more
precise is by asking how the characters that appear in the partition function of the string
emerge from spacetime, and how in turn the spacetime geometry can be constructed from
string theoretic quantities. Questions of this type have a long history in arithmetic algebraic
geometry, e.g. in the context of the Shimura—Taniyama conjef8#gand the Langlands’
program, but string theory provides a somewhat different focus than the one encountered in
a broader arithmetic framework. Modularity of motivic L-functions associated to algebraic
varieties along the lines of Langlands’ program is not sufficient. In order to be of string
theoretic significance, the motivic modular forms should allow an interpretation in terms of
modular forms that arise in the description of the physics on the Riemann surfaces defined
by the propagating string.

It was shown in[5] in the context of string compactifications on elliptic curves that the
Mellin transform of the Hasse—Weil L-function of the plane cubic

Ca={(x:y:2)eP®+y3+72=0) 1)

factors into a product of modular forms that arise from the characters of the underlying two-
dimensional theory. More precisely, the following result was obtained. Dgfine@?™* and
let

n(t)=q"*[[Q-4¢" (2)
n=1

denote the Dedekindfunction,c’g,m(r) be the affine SU(2) string functions at conformal
levelk € N, and

0% (@) = 3 (@)ck (1) 3)
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be the Hecke indefinite modular forms associatetj,r,g(r). Define further the congruence
group of elements of SL(Z) that are upper triangular madas

ab ab * %
Io(N) = {(cd) € SLy(Z) (cd) ~ <0*> (modN)}, 4)

and denote by>(1p(N)) the space of cusp forms with respectlig{N).

Theorem 1.1. The Mellin transform of the Hasse—Weil L-function Lyw(C3, s) of the cubic
elliptic curve C3 C P2 is a modular form fuw(C3, q) € S2(10(27)) which factors into the
product

faw(Ca. q) = 01 1(¢*)O7 1(¢?). (5)

Here @%’1(r) = n3(r)ci1(t) is the Hecke modular form associated to the quadratic

extension Q(~/3) of the rational field Q, determined by the unique string function cil(t) of
the affine Kac—-Moody SU(2)ulgebra at conformal level k = 1.

1.2 Elliptic curves are somewhat degenerate examples of Calabi—Yau manifolds and the
guestion arises whether the result$sjfcan be extended to more general algebraic curves,

e.g.
Co={(x:y:z) ePolx" +y" +7" =0} (6)

The genus of these Riemann surfaces is givep(lay,) = (n — 1)(n — 2)/2, hence except
for the cubic curveCs just discussed these curves are not elliptic. It is therefore not obvious
whether one should be able to find a string theoretic interpretation, generalizing the result
described above fafs. For such general Riemann surfaces there exists in particular no a
priori statement like the proof of the Shimura—Taniyama conjecture which would ensure the
modularity of theg-expansion derived from the Hasse—Weil L-function. It is this question
which we address in this paper.

An argument in favor of a conformal field theoretic interpretation of the cutyges
is provided by the fact that they appear as singular sets of higher dimensional Calabi—
Yau varieties that are expected to be exactly solvable. For the cubic €grseech higher
dimensional manifolds are abundant, examples being provided by the elliptic K3 surface
defined by the degree 6 polynomial in weighted projective sface> »)

Se={(z1:---:z4) € P(1,1,2,2)|Z? + zg + z% + zi =0}, @)
or the degree 12 Calabi-Yau threefold

X12={(z0: - : 24) € Pa1244)l25° + 21° + 25 + 23 + 23 = O}. (8)
To be more precise, the Gepner modeka$ is given by

P1,244) D X12 = (105 ® 44 ® 13)ss0 9)
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with two minimal models at conformal levdi = 10, one model ak = 4, and two
models atk = 1, all equipped with the diagonal affine invariant. The singular curve
in this threefold isP(122)[6] =P,[3], i.e. the Fermat curveCs. The result of
Theorem 1.Jrovides a geometric construction of the characters of the two minimal factors
atk =1.

In the case of{12 we can also identify the curv€s as the generic elliptic fiber which
can be identified by an iterative application of the construction describgg].ikirst we
can construct the elliptic K3 surfac® via the twist map as

P2,1,1)[6] x P2[3] — P(1,1,2,2)[6], (10)

and then the hypersurfacé > can be constructed by applying the twist map again in the
form

P,1,1)[12] x P(1,1,2,2)[6] = P1,1,2,4,4)[12]. (11)

We therefore see that the twist map allows to construct the thre&fpldas an iterated
orbifolds of products of curves and makes explicit the origin of the two minimal factors at
k = 1. There is a large number of varieties of this type among the Calabi—Yau hypersurface
threefolds constructed in the mirror pajp€}, and in refs[8], which describe the complete
construction of this class of varieties.

For higher genus curves of tygg similar embeddings can be obtained. A few examples
are provided by the quartic plane cur¢g, which is embedded in the octic hypersurface
in weighted projective spad®.1.2,2 2), the quintic curveCs, embedded iP(1,3 2 2.2), or
the septic curve7 in P(1 7,22 2). The class of higher dimensional varieties of this type is
large. Because they form part of an exactly solvable variety we might expect these curves to
inherit the information of the underlying string theory. In this way we are led to ask whether
more general, non-Calabi—Yau varieties are related to affine Kac—Moody algebras similar
to the cubic.

In the present paper we first analyze the simplest non-elliptic Fermat €yrivedetail,
and in the last section indicate a procedure which puts the quartic into perspective and
shows that other curves can be treated in a similar way. In particular we prove the following
result.

Theorem 1.2. The Hasse—Weil L-function Lyw(Ca, ) of the quartic plane curve Cy fac-
tors into a triple product Liyw(Ca, s) = Luw(Ea, 5)2, where Luw(Ea, s) is Hasse—Weil
L-functions of the weighted elliptic curve

Eq={(x0: x1: x2) € P.1.2)lx3 4+ x7 4+ x5 = 0}. (12)

The Hasse—Weil modular form fuw(Ea, q) € S2(I'0(64))associated to L(E4, s) factors into
a twisted product

fraw(Ea. q) = 02 1(47)° @ x2. (13)

Here the twist character is the Legendre symbol x2(-) = (g) and @i 1(7) is the affine SU(2)
theta function of the string function cil(t) at conformal level k = 2.
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This result shows that the modular forms derived from the quartic curve admits a Kac—
Moody theoretic interpretation via an SU(2) theta function.
1.3 We can turn this result around and read it as an arithmetic interpretation of a conformal
field theoretic object, the string theoretic parafermionic string functions.

Corollary 1.3. The SU(2)string function cil(r) at level k = 2 is determined by the twisted
Hasse—Weil modular form

10 = 5\ TawlEQ) © sl 14)

1.4 The weighted elliptic curvé, which emerges as the arithmetic building block of the
guartic curve also appears as the singular set of many higher dimensional varieties and
it is possible to repeat the conformal field theoretic analysis indicated above for Fermat
curves. This can be illustrated by considering the Calabi-Yau thre&fgjebf degree 16
embedded in the weighted projective spigg: 2 4.8). This variety is a K3-fibration with

a generic fiber described by a degree 8 hypersurfgoembedded irP (3 1,2 4) which is

elliptic. The generic fiber of this elliptic fibration is precisely the cuwg and we can
iteratively construct the degree 16 threefoldPin 1 2 4.8) with the methods of6] by first
considering the map

P,1,1)[8] x P(1,1,2)[4] — P(1,1,2,4)[8]. (15)

and then applying the map

P2,1,1)[16] % P(1,1,2,4)[8] — P(1,1,2,4,8) [16]. (16)

Alternatively, E4 appears as th&p-singular curve on this threefold. As in the case of
Theorem 1.1n the case of the cubic curdgheorem 1.Drovides a geometric interpretation
of the string theoretic modular form of the minimal factor at conformal lével 2 which

is part of the Gepner model corresponding to this threefold.

It becomes clear by an iterative application of the twist map constru@]ahat elliptic
threefolds which are K3 fibrations can be built from the generic elliptic fiber and other curves.
Thereby the question of modularity for these higher dimensional varieties is reduced to the
modularity problem of curves.

1.5 This paper is organized as follows. In Sectiwe compute the Hasse—Weil L-function

of the quartic. We will see that arithmetically the basic building block of this curve is
given by the elliptic Brieskorn—Pham curve of degree 4. In Se@iae briefly review the
relevant aspects of non-twisted affine Kac—Moody algebras. In Setti@modular form
defined by the twisted Mellin transform of the Hasse—Weil L-function is related to a modular
form derived from the character of an affine Kac—Moody algebra. A relation between the
character defining this twist and the quantum dimensions of the affine Kac—Moody algebra
is described in SectioB. In the final Sectioré we show that the factorization behavior

of the quartic is typical for Fermat curves, indicating that other curves can be treated in a
similar way.
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2. Hasse—Weil L-function

2.1 For algebraic varietieX the congruent zeta function at a prime nunbean be defined
as the generating function

Z(X/Fp, 1) = exp (Z #(xm,,;-)i) . (17)

reN

It was first shown by Schmid®,10]that for algebraic curvelthe zeta functioZ (X/F ,, 1)
is a rational function which takes the form

1)
2D == ey a8
where
2g
fp(P)(t) _ Z Bi(p)t, (29)

i=0
is a polynomial whose degree is given by the gen(#) = (2 — x(X))/2 of the curve,
where x(X) is the Euler characteristic of the curve. More important is the global zeta
function obtained by setting= p—° and taking the product over all rational primes at
which the variety has good reduction. Letlenote the set of rational primes at whikh
becomes singular and denote By the set of primes that are not § The global zeta
function then becomes

PP (p~) &(s)¢(s — 1)
. 5) = = , 20
Z(X, s) pgs A )75~ Lew(X.5) (20)
with the Hasse—Weil L-function
1
Luw(X,s) = W’ (21)

pePs

and the Riemann zeta functig(s) = ]'[,,(1 —p)~ L
The most direct way to compute the expansion at least for the lower primes involves
the comparison of the definition of the congruent zeta function with the rational expression
found by Schmidt. For our purposes it suffices to collect the first three non-trivial coefficients
Bo(p) =1,
B1(p) = N1p — (p+1),
Ba(p) = %(pr + N2.p) = (p+ 1)N1, + p,

22
Ba(p) = 3N3p + SN2y + ENS , — SN2, + N2p) + pNip, (22)

Be(p) = p*.
We collect inTable lour results for the first few primes.
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Table 1
The coefficient$;, B2 for the quartic curve”, of genus 3

Primep

2 3 5 7 11 13 17 19 23 29 31 37 41
N1, 3 4 0 8 12 32 12 20 24 0 31 32 12
N2, p, 5 28 34
Bi(p) 0 0 -6 0 0 18 -6 0 0 -30 0 -6 -30
Ba(p) 0 9 27

Using these results leads to the expansion

1
L Ca,8) =
Hw(Ca4, 5) 1;[ 1+ Bip)p—* +...+p3p—6s

_1+6 9 18+6+9+30+6+30+ 23)
- 5 9 13 17 29 37 415

The associateg-series then takes the form

fw(Ca, q) = q + 6¢° — 9¢° — 187+ 697" + 9%+ 309>+ 64"+ 304" +
(24)

Finite expansions like this often turn out to be useful because of theorems by Faltings and
Serre which show that such functions are determined uniquely by a finite number of terms.
2.2 The behavior of the coefficients, of the Hasse—Wei-expansion under Hecke op-
erators indicates that this series does not describe a Hecke eigenform. Hence the above
result for the Hasse—Weil L-function is not particularly illuminating except for the fact that
all the coefficients are divisible by 3. This suggests that the Hasse—Weil L-function of the
guartic plane curve can be viewed as the cubic power of a more basic L-series. We can write
Lyw(Cy, s) = Ls(s) with
2 3 6 2 1 10 2 10
LO=1t5 -5 "3 "1 25 20 "3 Tar (23)

The seried.(s) can be obtained via the Mellin transform

(27[)&/ s—1
L(s) = 0 fliy)y'~dy (26)
from the expansion

@) =q+29°—3¢° —64"%+ 24" — ¢ + 104°° + 26" + 104" + .- (27)

This result indicates thaf(¢) is the basic building block of the Hasse—Weil L-form
fuw(Ca, q), providing a sort of cubic root of it via its L-series.

2.3 The question arises whether one can interpret the expa(&ipim a geometric way as

the Hasse—Weil modular form of some other geometric object. To answer such a factorization
question it is useful to understand the polynomfa# () which determine the congruence
zeta function in a more systematic way in terms of Jacobi sums.
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Theorem ([11]). For the plane curve
Co={zp+71 +23 =0 C P (28)

defined over the finite field ¥, set d = (n, g — 1) and define the set Ag‘” of triplets o =
(g, @1, @2) of rational numbers

A" = {(ao, a1, 02) € Q30 < o < L.d = (n.q — 1), do;

2
= 0(mod1) » & =0(mod 1)} .

i=0
For such triplets define the Jacobi sums
. 1
Jaloo 01, @2) = —— > Xao(0)Xerr (1) Xerp (42), (29)
uq,uq,upely

ug+ug+up=0

where xq;(u;) = e and the integers m; are determined via u; = g™, where g € F, is
a generator. Then the cardinality of C,, /4 is given by

#(Cu/Fg) = Nig(Co) =1+ g+ Y jglao, a1, @2). (30)

q.n
aeA;

With these Jacobi sums one can express the F.K. Schmidt polynomial as

PO = [ @+ jpra(@)rte)t/ie, (31)

acA;
wherepu, is the smallest positive integer such thatdan the set4; defined by
2
= {cxe(@3|ai €(0.1).nei eN, ) o eN}, (32)
i=0
one finds p*« — 1)a; € N for all i. Applied to the quartic curvé€, the setA‘é’4 is given by

A‘I"‘—{@’ ifd =(4,9—1) e (1,2,
4 =

33
Ab ifd=4,q-1)=4 (33)

with A3 = A3(1) U A%(2), where
apy_ f(1 11y 111y /111
AZ(l)_{<2’4’4>’(4’2’4)’(4’4’2)}’
ay_ [(133) (313 (331
AZ(Z)_{<2’4’4 \a24)\a42)[" (34)
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Table 2
Coefficientspi(p) = N1, ,(E) — (p + 1) of the Hasse—Weil modular form of the elliptic quartic cufva terms
of the cardinalitiesvy, ,(E) for the lower rational primes

Primep

2 3 5 7 11 13 17 19 23 29 31 37 41
N1, 3 4 4 8 12 20 16 20 24 20 32 36 32
B1(p) 0 0 -2 0 0 6 -2 0 0 —10 0 -2 -10

The sumsj,(«) are constant over the permutation orbits4ff, and with j, (% 3 %) =

4
(111 i
Jp (Z»Z’ 21) one finds

1
Lyuw(Cy,s) = - 3> (35)
1;[ (A+2ap-p~+p-p )
wherea, = Rej,(3, 1, 1).
HenceLnw(Ca, s) = L3(s) in terms of an L-function
1
Lis)=]] (36)

S 1+2a, p+pp®
which has the form of the Hasse—Weil series of an elliptic curve. The quartic Cyrkias
genusg = 3, hence this factorization indicates that the L-function of this curve splits into a
product ofg elliptic contributions. Such a factorization into elliptic factors will not happen

for general Fermat curves.

2.4 The above decomposition allows us to return to the question, asked above, whether one
can determine an elliptic curve whose Hasse—Weil series has been determ{B&j e

quartic curveC4 becomes singular when reducedpet 2. Hence we would expect the
purported elliptic curve to have a conductor that is divisible by two, suggesting an elliptic
curve of degree 4. Such a curve is the well known weighted torus, described by

Eqa={(x0:x1:x2) € IE"(1,1,2)|1661 + x‘l1 + x% = 0} (37)

The cardinalities for this curve are collectedTiable 2
The Hasse—Weil modular form resulting from the soluti@h¥ , starts out as

Faw(Eas @) = g + 245 — 3¢° — 6483 + 2417 — 425 + 10¢%° + 2457 + 1044 + - .-
(38)
in agreement with the expansigifg) associated to the ‘cube rodt{(s) discussed above.
We are therefore in the same situation agshand we can ask whether the modular

form f(g) = fhw(E4, g) can be related to modular forms that are induced by conformal
field theoretic characters.
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3. Affine Kac-Moody algebras

3.1 A construction of non-twisted affine Kac—Moody algebras, also called affine Lie alge-
bras, is provided by the extensifi?]

GC=LGopCkapCd (39)
of the loop algebra
LG =GQC[, Y (40)

by the central extensiok and D = t%. In terms of the generator ® " the algebra
becomes

JOQM I @ 1" = if I @ " + Km8™8min.0. 41
C 5

The representations of this algebra can be parametrized by affine weigh(s, k, n)

of the Cartan subalgebid@}, K, D}, with i = 1, ..., r, wherer denotes the rank of the
underlying Lie algebra GFor fixed levelk of the theory the characteyg are essentially
parametrized by the weightof the representation. For the reduced characters of an affine
Lie algebra@ at levelk the characters transform as

x%(=1/1) = > S axal). (42)
pepk
where the modulas-matrix takes the form
1A+

~ VIPIOVIk + gy

HereP = ). Zw; denotes the lattice of fundamental weightsdefined by(w;, ozjv-) =
via corootsay = <3,Oé>- QY =3, Z«ay is the coroot lattice an®®/ Q" denotes the lattice
points ofP lying in an elementary cell of¥, while | P/ Q" | describes the number of points
in this set. PX is the set of all dominant weights at level and e(w) = (—1)™) is the
signature of the Weyl group element where¢(w) is the minimum number of simple
Weyl reflections thaiv decomposes intad ;. is the number of positive roots in the Lie
algebra G

3.2 Supersymmetric string models can be constructed in terms of conformal field theories
with N = 2 supersymmetry. The simplest class\ot= 2 supersymmetric exactly solvable
theories is built in terms of the affine SU(2)Igebra at levet as a coset model SURR
U(1)2/U(1)k+2.diag- Coset theorie&/ H lead to central charges of the form — ¢y, hence
the supersymmetric affine theory at lewestill has central charge, = 3k/(k + 2). The
spectrum of anomalous dimensian§ ; and U(1)-charge®* of the primary fieldsp, | at
levelk is given by

Z e(w) e ZrilwOto). putp))/thts) (43)

weW

Si.n

‘ _E(£+2)—q2 52

O Ak +2) 8’
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(44)

where? € {0,1,...,k}, €+ q+s € 2Z, and|q — s| < £. Associated to the primary fields
are characters defined as

K (0 2, 1) = €T ry, @riTbome/2gzni, (45)

where the trace is to be taken over a project}bg)s to a definite fermion number (mod 2)

of a highest weight representation of the (right-moviNg= 2 algebra with highest weight
vector determined by the primary field. It is of advantage to express these maps in terms of
the string functions and theta functions, leading to the form

Xt .q.s(T 20 1) = Z cf graj—s(D)02+(aj—s)k+2). 24(k+2)(T 22 1) (46)

It follows from this representation that the modular behavior of¥he: 2 characters de-
composes into a product of the affine SU(2) structure inftirelex and into®@-function
behavior in the charge and sector index. The string functi@g;{r) are given by

! i TiT x“—ky
ctn(®) = e > sign(y) 2T+ —ky?) 7)

T
(x,y)or ( % —X, % +y)

2 +1 m
ez ( 2012 2% )

while the classical theta functiosig ;. are defined as

. ) .
Gn,m(fa z. u) — e—meu Z emeE T+27ZIKZ. (48)
el 5o

It follows from the coset construction that the essential ingredient in the conformal field
theory is the SU(2) affine theory.

3.3 It was suggested by Gepner some time ago that exactly solvable string compactifica-
tions obtained by tensoring several copie&of 2 supersymmetric conformal field theories
derived from affine Kac—Moody algebras should yield, after performing appropriate pro-
jections, theories that correspond in some limit to geometric compactification described
by Brieskorn—Pham type Calabi-Yau varietj&8]. The evidence for this conjecture was
initially based mostly on spectral information for all models in the Gepner class of solvable
string compactifications and the agreement of certain types of intersection numbers which
allow an interpretation as Yukawa couplings, as well as Landau—Ginzburg type arguments
[14]. In the case of the Fermat cubic curve these results suggest that there is an underlying
conformal field theory of this elliptic curve that is described by the GSO projection of a
tensor product of three models at conformal Idvet 1. Roughly, this entails a relation of

the type

P2 D C3¢(SUR)=1,4,) 850 (49)

whereA  signifies the diagonal invariant for the SU(2) partition function, and GSO indicates
the projection which guarantees integral U(1)-charges of the states.
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In the case of higher genus curves no such direct relation is expected from a string
theory perspective. There is, however, a weaker embedding argument that suggests a pos-
sible modular interpretation. Higher genus curves can be embedded in higher dimensional
Calabi—Yau varieties which in turn are conjectured to be exactly solvable. Examples of
such embeddings for the quartic curve are provided by threefolds such as Brieskorn—Pham
hypersurface®(1,1,2,2,2) [8], P(1,2,3,3.3) [12], P(1,4,5,5,5) [20], and others. The first of these
varieties, e.g.

Xe={8+B+3+3+25=0CPui222 (50)
is expected to be related to the conformal field theory
((SU(2)k=6.4,)*? ® (SU(2k=2.4,)**)cs0 (51)

Hence we might expect that conformal field theoretic aspects are encoded in the quartic
curve

Py D Ca<>(SUR)=2.4,)%°. (52)

This leads to the affine Kac—Moody algebra SU(2) at level two and we can ask whether
there are relations between the modular objects determined by the affine algebra, and the
modular objects determined by the variety. The resul{§lofuggest that interesting affine
guantities to consider are the SU(2) theta functions associated to string functions at con-
formal levelk, defined a®} , (r) = n3(r)cf ,, (7). The expansion of the theta functions at
conformal levek = 2 follows from those of the string function expansions. It turns out that
relevant for the present discussion is the theta function

©2 1(q) = 481 — g — 24% + ¢* + 2¢° + O(¢®)). (53)

This is a modular form of weight one, and therefore cannot be identified directly with
the Hasse—Weil form itself. It will become clear below, however, Gh%i(q) emerges as
the building block of the Hasse—Weil modular forfiy (C4, ¢) of the quartic plane Fermat
curve.

4. Geometric modularity

4.1 From a physical perspective it is not clear a priori which conformal field theoretic
guantities should be the correct building blocks of the Hasse—Weil function, if any. Pos-
sibilities include the twists of the affine or parafermionic characters, or some elements of
the N = 2 superconformal model. The coset construction shows that the most important
ingredient of theV = 2 theory is given by the affine SU(2) Kac—Moody algebra. The string
functionscj ,,(7) of the N = 2 characters would appear to be natural candidates because
they capture the essential interacting nature of the field theory. Furthermore, associated to
string functions are natural number theoretic theta functions.

The main result of5] shows that the Hasse—Weil L-function of the cubic plane carye
is determined by the Kac—Moody string function of the affine SU(2) algebra at conformal
levelk = 1. Atk = 1 there is only one string functio}’l(r), which can be computed to
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lead to the expansion
11(t) = ¢ YA+ g+ 247 + 34> + 54" + 74° + O(g°)). (54)

It turns out that more important than the string functions are the associated SU(2) theta
functions@)’g’m(r) (3). These objects are associated to quadratic number fields determined

by the level of the affine theorfl5]. At level k = 1 the unique theta functioﬁ)il(r)

is associated to the real quadratic extengl{s/3) of the rational fieldQ. Its expansion
follows from the string function expansion, resulting in

011(q) = ¢¥*A - 29 — ¢* + 26° + ¢* + 2¢° + O(¢®)). (55)

It is this modular form of weight one which emerged[$§j as the building block of the
Hasse—Weil modular formiyw(Cs, ¢) of the cubic elliptic curve

fruw(C3, 7) = 61 1(31)O7 1(97). (56)

4.2 The case of the elliptic cubic curve is special because it is a Calabi-Yau curve and
therefore defines a consistent string theory background. For higher genus curves this is not
the case, and itis therefore not a priori clear whether one should expect a relation to the string
theoretic Kac—Moody algebra. As mentioned above, an argument that is encouraging is that
higher genus algebraic curves such as the quartic, and others, appear in higher dimensional
Calabi—Yau varieties as singular curves which have to be resolved.

4.3 In the case of the quartic curve we can use the result derived above that the L-function
is that of a triple product of elliptic curves. This reduces the current problem to the type
of problem solved irf5], and we can follow the logic used in the construction introduced
there. First we need to determine the weight and the level of this form. For a general elliptic
curve the corresponding modular forfaw(E, ¢g) defined by the Mellin transform of the
Hasse-Weil L-functiorLyw(E, s) is determined by the proof of the Shimura—Taniyama
conjecture to be an element §3(Ip(N)) for some levelN. Alternatively, one can read

off the weight of a Hecke eigenform from the multiplicative properties of its coefficients
{a,}nen induced by the Hecke operators

k—1
Amn = amay(m,n) =1, Al = aprap — P A1,

apn = ((,lp)n, forp|N, (57)

as described in more detail j&] for the case of cubic plane curve.

4.4 The quartic curve is singular at the prime= 2, therefore we expect the conductor of
the elliptic curves involved to be divisible by 2, and perhaps by powers of two. Using Weil's
conductor conjecturd 6] for elliptic curves we further expect the modular conductor of the
corresponding modular form to be divisible by some power of 2. The arithmetic conductor
of the elliptic curveE can be determined via Tate’s algoritH@v] from the generalized
affine form ofE given by

y? — a1xy — azy = x° + axx® + asx + as. (58)

By a result of 0gd18] the conductor of such a curve can be computed as

Neo =[] p. (59)
badp
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where the exponery, is given by
fp=o0rd,Agp +1—sp, (60)

in terms of discriminani ¢y of the curve and the numbey of irreducible components of

the singular fiber gb. This shows that the conductor of the elliptic curve can be viewed as
a quantity which combines the bad primes with a measure of the severity of the singularity
at these bad primes.

4.5 The elliptic quartic curveE, can be transformed into its affine form by choosing inho-
mogeneous coordinates and defining new coordinatesz/y andu = (x/y)?, leading to

the Weierstrass form

v =u®+u. (61)

Tate’s computation of the discriminant simplifies considerably for this curve, leading to
Ag, = —64, and therefore opdi g, = 6. The singular fiber is of Kodaira type Il, and
therefore the arithmetic conductoris= 64.

4.6 Combining the conductor argument with the string theoretic embedding of the quartic
curve into higher dimensional varieties we are led to consider the form

02 1(q*? = g — 24° — 3¢° + 647 + 2417 — % — 104%° + - - (62)

Comparing this with the Mellin transfori§38) of the cubic root of the Hasse—Weil L-form
of the quartioC4 shows agreement Wit@il(4r)2 except for the signs in the term$ with
n = 1(mod 8).

We therefore see that the discussion of the quartic curve must involve an ingredient that
goes beyond the analysis that succeedd8]iin providing a string theoretic Kac—Moody
algebrainterpretation of the Hasse—Weil L-function. In some sense the elliptic curve defined
by C3 is too special to reveal all the key elements necessary for this identification. In the
following we will first complete the identification of the Hasse—Weil modular form with a
string theoretic modular form in a somewhat utilitarian manner by pin-pointing the missing
ingredient. We then turn to the physical interpretation of this ingredient and explain why it
does not appear in the discussion(f

The sign flip suggests that the Hasse—Weil modular fggn(E4, ¢) might be related
to the modular form(~)il(4r)2 via a twist. For a modular forny(q) = >, a,q" and a
Dirichlet character

x:7Z— K* (63)
with values in a fiel&, define the twisted form as

F@) =" x(m)ang". (64)

We are interested in a character with conductor 8, taking valu&s=inlF,. An example of
a class of characters which leads to such an object is provided by Legendre symbols. These
are defined on rational primes as

n 1 nisasquareiff,,
x(p)=|—|= : : (65)
p —1 nisnotasquare ifi,.
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The conductor ofy,(:) is given by n if n =1(mod4) and 4 for n =2, 3(mod
4).
For non-prime numbers the generalized Legendre symbol is defined by using the prime
decomposition. Every natural numbercan be decomposed into primes@as= p1--- p,
and the generalized symbol is defined as

xwm=ﬁ(”) (66)

iz1 \Pi

This shows that fon = 2 the Legendre symbol takes the form

") 2 1 r=1(mod8) 67)
X0=\r) T -1 r=5(mod8s)

It is this character which provides the twist from the conformal field theory induced
modular form to the elliptic L-function which provides the basic building block of the
Hasse—Weil L-function of the quartic curve.

We therefore see that the CFT modular fo@ﬁl(4t)2 of weight two is the twist of
the geometric weight two modular form via the number theoretic Legendre symbol. Put
differently, we see that if we denote hfyil(4r)2 ® x2 the modular form obtained by
twisting the form@il(4r)2 by the charactey(-), we can write the Hasse—Weil L-function
of as

Liw(Ca, 5) = L(6% 1(47) ® x2, 5)°. (68)

This concludes the proof of the theorem stated in Section 1.

The remaining question is whether the theta function input is unique. To answer this one
can use the Eichler-Shimura the¢tp—21] @% 1(4r)2 is an element in the space of cusp
forms So(I'p(32)). For arbitrary modular level, the dimension of the spade(Io(N)) can
be computed as the genus of the modular cufyéV) via

p(V) (V) ve(N)  veo

12 4 3 2’
wherew(N) is the index ofl p(N) in I'(1) = SL(2, Z), v2(N) andvz(N) are the number of
elliptic points of order 2 and 3, ang,(N) is the number of p(N) inequivalent cusps. For
N = 32 this implies that the space of cusp forms is one-dimensional, hféf(de)z is its
unigue generator, up to the multiplication of a constant.

8(Xo(N)) =1+

(69)

5. Quantum dimensions

The characteg2(-) which appears above in the context of providing a string theoretic
interpretation of the Hasse—Weil modular form furthermore points toward the field of quan-
tum dimensions, thereby providing a link between the problem of a geometric explanation
of the string theoretic modularity and the problem of providing a geometric explanation of
the string theoretic spectrum.
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For general square freethe Legendre charactes () allow a characterization of the
factorization behavior of rational primgsvhen viewed as elements in a quadratic extension
Q(/n). They describe whether the rational pripeplits into a product of prime ideals
p; C Oq(ym) inthering of algebraicintege@y, - The principal idealf) factors asf) =
p1b, if x2(p) = 1, remains prime if,(p) = —1, and ramifies, i.e ) = p, if x.(p) =0,

i.e. pln. In summary we can write

1 if(p) = pib2
xn(p)=q —1 if(p)is prime (70)
0 if(p)=p>

Forn = 2 the characteg; therefore is associated to the quadratic exten8ig¢r2). It turns
out that this is precisely the field determined by the anomalous dimensions of the affine
theory when mapped into the quantum dimensions. This can be seen as follows.

It was noted if1] that a link between the geometry and the conformal field theory can
be obtained by using a translation of the anomalous dimensions into algebraic integers via
the Rogers dilogarithm. In the simple case of the affine Lie algebra SU(2) at conformal level
k the modular transformations of the charactemssociated to the primary fieldg with
anomalous dimensions

(e +2)
A= 2612 (7)
are given by
1 :
w7 ) =S St ) (72)

with modularS-matrix

[ 2 [+ 1)m+ L)
m= ) — El — . 7
Se k+2$ln< 42 0<¢,m=<k (73)

With these matrices one can define the generalized quantum dimensighg, as
Sem/Som for the affine SU(2) algebra at leviel The importance of these numbers derives
from the fact that even though they do not directly provide the scaling behavior of the
correlation functions, they do contain the complete information about the anomalous di-
mensions as well as the central charge. The first step in this direction was the realization by
Kirillov and Reshetikhin that the central charge can be expressed in terms of the quantum
dimensions. Earlier mathematical results had been obtained by Lewin. DenofRdners’
dilogarithm

L(z) = Lia(z) + 3109(z) log(1 - z) (74)

andLis is Euler’s classical dilogarithm

Zi‘l

Liyz) =) 2 (75)

neN
Then one has the following result.
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Theorem ([22—24)). For the generalized quantum dimensions Qg one finds the following
relations

L(1)Z (Q ) %—24A§,’1‘)+6m. (76)
m

For m = 0 this theorem reduces to the central charge result in terms of the quantum
dimensions®; = S0/ Soo

3k
L(l) Z <Q£> ~rr2 (77)

that was obtained earlier [25,26]

It follows that the quantum dimensions contain the essential information about the
spectrum of the conformal field theory and Rogers’ dilogarithm provides, via Euler’s
dilogarithm, the map from the quantum dimensions to the central charge and the anomalous
dimensions. Areview of these results and references to the original literature can be found in
[24].

In the case of the elliptic curvE, the exactly solvable model is a tensor product of two
SU(2) theories at conformal level= 2, equipped with the diagonal affine invariant

P12 D Ea ~ (SURE, )eso (78)

The quantum dimensions of the SU(2) theory at Idvel 2 take values in the quadratic
extensionQ(+/2) and therefore we find that the field of quantum dimensions provides a
physical explanation of the emergence of the Legendre character in the modularity relation
(13). Hence the main result of this paper can be interpreted as a geometric derivation of a
conformal field theoretic object-the conformal field theoretic modular f@ifr@(4r)2 is the

twist of the geometric modular form defined by the Hasse—Weil L- function via the quadratic
character associated to the number field of the quantum dimensions.

This physical explanation of the origin of the twist makes it clear why no character
was necessary in the discussion%fj of the plane cubic elliptic curv€'s. The quantum
dimensions of the affine theony(ll) at conformal levek = 1 take values in the field of
rational numbef).

6. Generalizations

For more general curves of higher genus it is possible to decompose the Jacobians in
a way similar to the analysis in previous sections. In general the factorization behavior
can be quite involved and in the following we briefly describe what is known about the
splitting behavior. For more detail we refer to the original literat[#%é,30] (see also
[31,2]). The reason why this factorization behavior is relevant in the present context is
that the splitting occurs on the level of isogenies, a map between abelian varieties that is
weaker than an isomorphism. It is however known that isogeneous varieties have the same
L-functions. Also important is that the varieties that emerge in this factorization admit
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complex multiplication and therefore their L-functions are determined by algebraic Hecke
characters. Hecke L-functions are known to be modular and therefore the factorization
of Jacobian varieties allows to determine modular forms associated to these higher genus
curves.

It was shown by Fadde427]* that the Jacobian variet§(C,) of Fermat curve§, c P,
of prime degree splits into a product of abelian factégs

o= I Ao (79)
0;€T/(Z)dZ)*

where the sef provides a parametrization of the cohomology(af and the set®); are
orbits inZ of the multiplicative subgroupgZ/d7)* of the groupZ/dZ. More precisely it
was shown that there is an isogeny

iJC)— ][ Ao (80)
O€T/(Z.)dT)*

where an isogeny: A— B between abelian varieties is defined to be a surjective homo-
morphism with finite kernel. ExplicitlyZ is the set of tripletsr( s, r) parametrizing a basis
of the cohomology

Hl(Cd) = {wrss = x’_lys_d dx|r,s,t e N0 <r,s,t<d, r+s+t=0modd},
(81)

and the abelian varietieosg”’t)] are associated to orbits[§, r)] of the triplets ¢, s, ¢) with
respect to the grou/dZ)*.
The periods of the Fermat curve have been computed by Roli8lddto be

_1 st X 1\ & js+kt
/A.,Bkk‘””*f—dB(d’d) (=8 =8 (82)

wheret is a primitivedth root of unity, and

1
B(u, v) = / M1 — vt (83)
0
is the classical beta functiol, B are the two automorphism generators

AL, y,2) = (1, 8y, 2), B(1l,y,2) = (L y,é2) (84)

andx is the generator of I{C,) as a cyclic module ovéf[.A, B]. The period lattice of the
Fermat curve therefore is the span of

r s

e 1 .
(eamna-ge(Gg) ), wsitza-t

r+s+t=d

(85)

1 More accessible references §28-30]
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The abelian factoA[(,. ;. associated to the orb®,.,, = [(# s, )] can be obtained as the
guotient

A[(r,s,t)] = (C(p(dO)/Z/Ar,s,t’ (86)
wheredy = d/gcdg, s, t) and the latticed,. s ; is generated by elements of the form
1 (as) (at)
(A —E¥)A—gMZB | —=, L), 87
ao - e engs (4 4) @7)

wherez € Z[ 4], 04 € Gal(Q(iq,)/Q) runs through subgroups of the Galois group of the
cyclotomic fieldQ(u4,) and(x) is the smallest integer € x < 1 congruent ta modd.
r,s,t

Alternatively, the abelian variety ;" can be constructed in a more geometric way as
follows. Consider the orbifold of the Fermat cur@g with respect to the group defined as

G = (51, &2, &3) € uOIELESEL = 1). (88)

The quotienCd/Gf;‘” can be described algebraically via projections

T/ 1 Cq— CY, (x, y) = (4 X7y =2 (u, v), (89)
which mapCy into the curves
' = =u"(1—u)’). (90)

For prime degrees the abelian varietie?” can be defined simply as the Jacobians
J(C’*") of the projectiongC’;™'. Whend has non-trivial divisors:|d, this definition must
be modified as follows. Consider the projected Fermat curves

Ca— Cmy (2, 9) > (6, ) 1= (x¥m, y¥m), (91)

1,8,t

whose Jacobians can be embedded:as(C,,) — J(C4). Composing the projectiofi,
as

1,8,

e Td 1,8t
J(Cn)— J(Cq) = J(C;~ (92)

for all proper divisorsn|d leads to a collection of subvarietie51|dTt;'“(e(J(Cm))). The
abelian variety of interest then is defined as

AL = J(CE)/ Unia T (e(I(Cm)). o

nSs,t

The abelian varieties\ ;" are not necessarily simple but it can happen that they in
turn can be factored. This question can be analyzed via a criterion of Shimura—Taniyama,
described in32]. Applied to theA;’“ discussed here the Shimura—Taniyama criterion
involves computing for each sét;*’ defined as

H;}s’t = {a € (Z/dZ)*|(ar) + (as) + (at) = d } (94)
another seW/;*' defined as
Wyt ={a € (Z/dZ)*|aH}"" = H;™}. (95)

1,8t

If the order|W)*'| of W;*" is unity then the abelian variety’;"’ is simple, otherwise it
splits into| W/;*| factors[33].
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